TORLON®

Polyamide-imide (PAI)

Main Characteristics:

- Very high max. allowable service temperature in air (250°C continuously)
- Excellent retention of mechanical strength, stiffness and creep resistance over a wide range of temperatures
- Extremely low coefficient of linear thermal expansion up to 250°C
- Excellent wear and frictional behaviour (particularly TORLON® 4301 PAI)
- · Excellent UV resistance
- · Inherent low-flammability
- Exceptional resistance against high energy radiation (gamma and X rays)

The TORLON® PAI grades, combining excellent retention of mechanical strength, stiffness and creep resistance over a wide temperature range with extremely low thermal expansion up to 250°C, are top-rank materials for high temperature applications.

We distinguish five grades:

TORLON® 4501 PAI

(PAI + graphite + PTFE)

Colour: Black

This compression moulded material is similar in composition to TORLON® 4301 PAI, and is selected when larger shapes are required.

TORLON® 5530 PAI

(PAI + GF30) Colour: Khaki grey

This compression moulded, 30% glass fibre reinforced grade offers higher stiffness, mechanical strength and creep resistance than TORLON® 4203 PAI and TORLON® 4503 PAI. It is well suited for structural applications supporting static loads for long periods of time at high temperatures. The suitability of TORLON® 5530 PAI for sliding parts, however, is to be carefully examined since the glass fibres tend to abrade the mating surface.

TORLON® 4203 PAI

(PAI)

Colour: Yellow ochre

TORLON® 4203 PAI offers the best toughness and impact strength of all TORLON® PAI grades. Because of its intrinsic high temperature resistance, high dimensional stability and good machinability, this extruded TORLON® PAI grade is very popular for precision parts in high-tech equipment. In addition, its good electrical insulating ability provides numerous possibilities in the field of electrical components.

TORLON® 4503 PAI

(PAI)

Colour: Yellow ochre

This compression moulded material is similar in composition to TORLON® 4203 PAI, and is selected when larger shapes are required.

TORLON® 4301 PAI

(PAI + graphite + PTFE)

Colour: Black

The addition of graphite and PTFE provides higher wear resistance and lower coefficient of friction compared to the unfilled grade as well as little or no stick-slip in use. This extruded grade excels in severe wear applications such as non-lubricated bearings, seals, bearings cages and reciprocating compressor parts.

TORLON® 4203 PAI Polyamide-imide (PAI)

TORLON® 4203 PAI offers the best toughness and impact strength of all TORLON® PAI grades. Because of its intrinsic high temperature resistance, high dimensional stability and good machinability, TORLON® PAI grade is very popular for precision parts in high-tech equipment. In addition, its good electrical insulating ability provides numerous possibilities in the field of electrical components.

- High maximum service temperature (250°C)
- Inherent low flammability
- Outstanding dimensional stability (to +250°C) Excellent dielectric and insulating properties
- · Excellent resistance against high energy radiation
- Exceptional wear resistance
- Excellent retention of mechanical strength / stiffness over a wide range of temperatures

Common Applications:

Connectors; Switches; Relays; Thrust washers; Valve seats; Piston rings; Mechanical linkages; Bushes; Electrical and thermal insulators.

Delivery Programme			
	min	max	
Rod 2440mm long diameter (mm)	2.38	50.8	
Plate 1220mm long width (mm) thickness (mm)	305 6.35	25.4	
Colour: Yellow ochre			

Density	Technical Specification			
Water absorption*1 • after 24h immersion in water (23°C) 62 mg 29 • Saturation in air (23°C/50% RH) ~ % 2.5 • Saturation in water (23°C) ~ % 4.4 Melting temperature ~ °C N/A Glass transition temperature ~ °C 280 Thermal conductivity at 23°C ~ W/(K.m) 0.26 Coefficient of linear thermal expansion • werage value between 23 · 100°C ~ m/(m-K) 30.10°6 • average value between 23 · 150°C ~ m/(m-K) 30.10°6 average value above 150°C ~ m/(m-K) 30.10°6 • average value above 150°C ~ m/(m-K) 30.10°6 m/(m-K) 30.10°6 • average value above 150°C ~ m/(m-K) 30.10°6 m/(m-K) 30.10°6 • average value above 150°C ~ m/(m-K) 30.10°6 * • Temperature of deflection under load * * ° C 280 Max allowable service temperature in air • • ° ° 2 2 2	Property	ISO Method	Units	Values
- after 24h immersion in water (23°C) 62		1183	g/cm ³	1.41
Saturation in air (23°C/50% RH)	Water absorption*1			
· Saturation in air (23°C/50% RH) ~ % 2.5 · Saturation in water (23°C) ~ % 4.4 Melting temperature ~ °C N/A Glass transition temperature ~ °C 280 Thermal conductivity at 23°C ~ W/(K.m) 0.26 Coefficient of linear thermal expansion . werage value between 23 · 100°C m/(m-K) 30.10°6 · average value between 23 · 150°C ~ m/(m-K) 30.10°6 · average value above 150°C ~ ° 2 20	after 24h immersion in water (23°C)	62	mg	29
• Saturation in water (23°C) ~ % 4.4 Melting temperature ~ °C N/A Glass transition temperature ~ °C 280 Thermal conductivity at 23°C ~ W/(K.m) 0.26 Coefficient of linear thermal expansion . w/(K.m) 0.26 coefficient of linear thermal expansion . m/(m-K) 30.10°6 . average value between 23 - 150°C ~ m/(m-K) 30.10°6 . average value between 23 - 150°C ~ m/(m-K) 30.10°6 . average value above 150°C ~ m/(m-K) 30.10°6 . average value above 150°C ~ m/(m-K) 30.10°6 . average value between 23 - 150°C ~ m/(m-K) 30.10°6 . average value above 150°C ~ m/(m-K) 30.10°6 . average value above 150°C ~ m/(m-K) 30.10°6 . average value above 150°C ~ C 280 Max allowable service temper		62	%	0.35
Melting temperature ~ °C N/A Glass transition temperature ~ °C 280 Thermal conductivity at 23°C ~ W/(K.m) 0.26 Coefficient of linear thermal expansion . werage value between 23 · 100°C ~ m/(m-K) 30.10°6 . average value between 23 · 150°C ~ m/(m-K) 30.10°6 . average value between 23 · 150°C ~ m/(m-K) 30.10°6 . average value between 23 · 150°C ~ m/(m-K) 30.10°6 . average value between 23 · 150°C ~ m/(m-K) 30.10°6 . average value between 23 · 150°C ~ m/(m-K) 30.10°6 . average value between 23 · 150°C ~ m/(m-K) 30.10°6 . average value between 23 · 150°C ~ m/(m-K) 30.10°6 . average value between 23 · 150°C ~ m/(m-K) 30.10°6 . average value between 23 · 150°C ~ m/(m-K) 30.10°6 . average value between 23 · 150°C ~ 280 Max 180 60°C 250	Saturation in air (23°C/50% RH)	~	%	2.5
Glass transition temperature \sim °C 280 Thermal conductivity at 23°C \sim W/(K.m) 0.26 Coefficient of linear thermal expansion \cdot average value between 23 · 100°C \sim m/(m-K) 30.10°6 \cdot average value between 23 · 150°C \sim m/(m-K) 30.10°6 Temperature of deflection under load \cdot method A: 1.8 MPa 75 °C 280 Max allowable service temperature in air \cdot for short periods*2 \sim °C 270 continuously for 20,000 hrs*3 \sim °C 250 Flammability*4 \cdot "Oxygen Index" 4589 % 45 \cdot according to UL94 (1.5/3mm thickness) \sim \sim V-O/V-O Tension Test*5 \cdot Stress at yield*6 527 MPa 120 \cdot Strain at break*6 527 MPa 4500 Compression Test*8 \cdot Stress at 1/2% nominal strain*7 604 MPa 27/53 Impact \cdot Charpy*9 179/1eU kJ/m² no break Impact \cdot Charpy notched 179/1eA kJ/m² 10 Ball Indentation hardness*10 2039-1 N/mm² 200 Hardness Rockwell*10 2039-2 \sim E80 M120 Electric Strength*11 60243 KV/mm 24 Volume resistivity 60093 Ω cm $>$ 10 ¹³ Relative Permittivity at 1 Mhz 60250 \sim 3.9	Saturation in water (23°C)	~	%	4.4
Thermal conductivity at 23°C \sim W/(K.m) 0.26 Coefficient of linear thermal expansion \cdot average value between $23 \cdot 100^{\circ}\text{C}$ \sim m/(m-K) 30.10^{-6} \cdot average value between $23 \cdot 150^{\circ}\text{C}$ \sim m/(m-K) 30.10^{-6} \cdot average value above 150°C \sim m/(m-K) 30.10^{-6} Temperature of deflection under load \cdot method A: 1.8 MPa 75 °C 280 Max allowable service temperature in air \cdot for short periods*2 \sim °C 250 Flammability*4 \cdot "Oxygen Index" 4589 % 45 \cdot according to UL94 (1.5/3mm thickness) \sim \sim V-O/V-O Tension Test*5 \cdot Stress at yield*6 \cdot 527 MPa \cdot 10 \cdot 11 \cdot 10 \cdot 10 \cdot 11 \cdot 10 \cdot 11 \cdot 10 \cdot 11 \cdot 10 \cdot 11 \cdot 10 \cdot 12 \cdot 10 \cdot 11	Melting temperature	~	°C	N/A
Coefficient of linear thermal expansion · average value between 23 · 100°C ~ m/(m-K) 30.10°6 · average value between 23 · 150°C ~ m/(m-K) 30.10°6 · average value above 150°C ~ m/(m-K) 30.10°6 Temperature of deflection under load · method A: 1.8 MPa 75 °C 280 Max allowable service temperature in air · for short periods*2 ~ °C 270 · continuously for 20,000 hrs*3 ~ °C 250 Flammability*4 · "Oxygen Index" 4589 % 45 · according to UL94 (1.5/3mm thickness) ~ ~ V-0/V-0 Tension Test*5 · Stress at yield*6 527 MPa 120 · Strain at break*6 527 % 10 · Tensile modulus of elasticity*7 527 MPa 4500 Compression Test*8 · Stress at 1/2% nominal strain*7 604 MPa 27/53 Impact - Charpy *9 179/1eU kJ/m² no break Impact - Charpy notched 179/1eA kJ/m² 10 Ball Indentation hardness*10 2039-1 N/mm² 200 Hardness Rockwell*10 2039-2 ~ E80 M120 Electric Strength*11 60243 KV/mm 24 Volume resistivity 60093 Ω.cm >10¹4 Surface resistivity 60093 Ω.cm >10¹3 Relative Permittivity at 1 Mhz 60250 ~ 3.9	Glass transition temperature	~	°C	280
· average value between 23 · 100°C ~ m/(m-K) 30.10°6 · average value between 23 · 150°C ~ m/(m-K) 30.10°6 · average value above 150°C ~ m/(m-K) 30.10°6 Temperature of deflection under load . method A: 1.8 MPa 75 °C 280 Max allowable service temperature in air . for short periods*2 ~ °C 270 · continuously for 20,000 hrs*3 ~ °C 250 Flammability*4 . "0xygen Index" 4589 % 45 · according to UL94 (1.5/3mm thickness) ~ ~ V-0/V-0 Tension Test*5 . Stress at yield*6 527 MPa 120 · Strain at break*6 527 MPa 4500 Compression Test*8 . Stress at 1/2% nominal strain*7 604 MPa 27/53 Impact - Charpy*9 179/1eU kJ/m² no break Impact - Charpy notched 179/1eA kJ/m² 10 Ball Indentation hardness*10 2039-1 N/mm² 200 Hardness Rockwell*10 2039-2 <td< td=""><td>Thermal conductivity at 23°C</td><td>~</td><td>W/(K.m)</td><td>0.26</td></td<>	Thermal conductivity at 23°C	~	W/(K.m)	0.26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coefficient of linear thermal expa	nsion		
· average value above 150°C	average value between 23 - 100°C	~	m/(m-K)	30.10 ⁻⁶
Temperature of deflection under load $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	average value between 23 - 150°C	~	m/(m-K)	30.10 ⁻⁶
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	average value above 150°C	~	m/(m-K)	30.10 ⁻⁶
Max allowable service temperature in air $ \cdot \text{ for short periods}^{*2} \sim \qquad ^{\circ}\text{C} \qquad 270 \\ \cdot \text{ continuously for 20,000 hrs}^{*3} \sim \qquad ^{\circ}\text{C} \qquad 250 \\ \text{Flammability}^{*4} \\ \cdot \text{ "Oxygen Index"} \qquad 4589 \qquad \% \qquad 45 \\ \cdot \text{ according to UL94 (1.5/3mm thickness)} \sim \qquad \sim \qquad \text{V-O/V-O} \\ \text{Tension Test}^{*5} \\ \cdot \text{ Stress at yield}^{*6} \qquad 527 \qquad \text{MPa} \qquad 120 \\ \cdot \text{ Strain at break}^{*6} \qquad 527 \qquad \text{MPa} \qquad 4500 \\ \text{Compression Test}^{*8} \\ \cdot \text{ Stress at 1/2% nominal strain}^{*7} \qquad 604 \qquad \text{MPa} \qquad 27/53 \\ \text{Impact - Charpy}^{*9} \qquad 179/1eU \qquad \text{kJ/m}^2 \qquad \text{no break Impact - Charpy notched} \qquad 179/1eA \qquad \text{kJ/m}^2 \qquad 10 \\ \text{Ball Indentation hardness}^{*10} \qquad 2039-1 \qquad \text{N/mm}^2 \qquad 200 \\ \text{Hardness Rockwell}^{*10} \qquad 2039-2 \qquad \sim \qquad \text{E80 M120} \\ \text{Electric Strength}^{*11} \qquad 60243 \qquad \text{KV/mm} \qquad 24 \\ \text{Volume resistivity} \qquad 60093 \qquad \Omega.\text{cm} \qquad >10^{14} \\ \text{Surface resistivity} \qquad 60093 \qquad \Omega \qquad >10^{13} \\ \text{Relative Permittivity at 1 Mhz} \qquad 60250 \qquad \sim \qquad 3.9 \\ \end{cases}$	Temperature of deflection under le	oad		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	method A: 1.8 MPa	75	°C	280
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		e in air		
Flammability*4 • "Oxygen Index" • 4589		~	•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		~	°C	250
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	4589	%	45
Tension Test*5 • Stress at yield*6 • Strain at break*6 • Tensile modulus of elasticity*7 • Stress at 1/2% nominal strain*7 Impact - Charpy*9 Impact - Charpy notched Ball Indentation hardness*10 Hardness Rockwell*10 Electric Strength*11 Surface resistivity Relative Permittivity at 1 Mhz Stress at yield*6 527 MPa 120 MPa 4500 MPa 27/53 MPa 4500 MPa 27/53 Impact - Charpy*9 179/1eU kJ/m² no break Impact - Charpy notched 179/1eA kJ/m² 10 2039-1 N/mm² 200 E80 M120 E80 M120	, , ,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				V 0/ V 0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Stress at yield*6	527	MPa	120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Strain at break*6	527	%	10
$\begin{array}{llllllllllllllllllllllllllllllllllll$		527	MPa	4500
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Compression Test*8			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	 Stress at 1/2% nominal strain*7 	604	MPa	27/53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Impact - Charpy*9	179/1eU	kJ/m ²	no break
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Impact - Charpy notched	179/1eA		10
Electric Strength* *11 60243 KV/mm 24 Volume resistivity 60093 Ω .cm > $^{10^{14}}$ Surface resistivity 60093 Ω > $^{10^{13}}$ Relative Permittivity at 1 Mhz 60250 ~ 3.9	Ball Indentation hardness*10	2039-1	N/mm ²	200
Volume resistivity60093 Ω .cm>1014Surface resistivity60093 Ω >1013Relative Permittivity at 1 Mhz60250~3.9		2039-2	~	E80 M120
Surface resistivity 60093 Ω >10 ¹³ Relative Permittivity at 1 Mhz 60250 ~ 3.9	_		,	
Relative Permittivity at 1 Mhz 60250 ~ 3.9	-		$\Omega.cm$	
·	-		Ω	
Dielectric dissipation factor " 60250 ~ 0.031	·		~	
	Dielectric dissipation factor "	60250	~	0.031

 $^{^{*1}}$ - According to method 1 of ISO62 and done on discs Ø 50 x 3mm

⁻ Only for short time exposure (a few hours) in applications where no or only a very low load is applied to the material

^{*3 -} Temperature resistance over a period of min. 20,000 hours. After this there is a decrease in tensile strength of about 50% as compared with the original value. The temperature value given here is thus based on the thermal-oxidative degradation which takes place and causes a reduction in properties. Note however, that the max. allowable service temp. depends in many cases essentially on the duration and the magnitude of the mechanical stresses to which the material is subjected.

^{*4 -} These mostly estimated ratings, derived from raw material supplier data, are not intended to reflect hazards presented by the materials under actual fire conditions. There is no UL yellow card available for TORLON 4203 stock shapes.

⁻ Test specimens: Type 1B

^{*6 -} Test Speed: 5mm/min

⁻ Test specimens: cylinders ø 12 x 30mm

^{*10 -} Test specimens: 10mm thick

^{*7 -} Test Speed: 1mm/min

^{*9 -} Pendulum used: 4 J

^{*11 -} Test specimens: 1mm thick

TORLON® 4503 PAI Polyamide-imide (PAI)

This compression moulded material is similar in composition to TORLON® 4203 PAI, and is selected when larger shapes are required.

- High maximum service temperature (250°C)
- Excellent resistance against high energy radiation

Inherent low flammability

- Exceptional wear resistance
- Outstanding dimensional stability (to +250°C) Excellent dielectric and insulating properties
- Excellent retention of mechanical strength / stiffness over a wide range of temperatures

Common Applications:

Connectors; Switches; Relays; Thrust washers; Valve seats; Piston rings; Mechanical linkages; Bushes; Electrical and thermal insulators.

Technical Specification

Delivery Programme				
	min	max		
Rod 153mm long diameter (mm)	57.15	381.0		
Tube 203m long outer diameter (mm) inner diameter (mm)	42.86 19.05	193.68 107.95		
Tube 153m long outer diameter (mm) inner diameter (mm)	196.85 50.80	882.65 736.6		
Colour: Yellow ochre				

Toomingan opcomouncin			
Property	ISO Method	Units	Values
Density	1183	g/cm ³	1.41
Water absorption*1			
after 24h immersion in water (23°C)	62	mg	29
	62	%	0.35
Saturation in air (23°C/50% RH)	~	%	2.5
Saturation in water (23°C)	~	%	4.4
Melting temperature	~	°C	N/A
Glass transition temperature	~	°C	280
Thermal conductivity at 23°C	~	W/(K.m)	0.26
Coefficient of linear thermal expa	nsion		
average value between 23 - 100°C	~	m/(m-K)	30.10 ⁻⁶
average value between 23 - 150°C	~	m/(m-K)	30.10 ⁻⁶
average value above 150°C	~	m/(m-K)	30.10 ⁻⁶
Temperature of deflection under I	oad		
· method A: 1.8 MPa	75	°C	280
Max allowable service temperatu	re in air		
· for short periods*2	~	°C	270
· continuously for 20,000 hrs*3	~	°C	250
Flammability *4			
· "Oxygen Index"	4589	%	45
according to UL94 (1.5/3mm thickness)	~	~	V-O/V-O
Tension Test*5			
· Stress at yield*6	527	MPa	120
· Strain at break*6	527	%	10
 Tensile modulus of elasticity*7 	527	MPa	4500
Compression Test*8			
Stress at 1/2% nominal strain*7	604	MPa	27/53
Impact - Charpy*9	179/1eU	kJ/m²	no break
Impact - Charpy notched	179/1eA	kJ/m²	10
Ball Indentation hardness*10	2039-1	N/mm ²	200
Hardness Rockwell*10	2039-2	~	E80 M120
Electric Strength*11	60243	KV/mm	24
Volume resistivity	60093	$\Omega.cm$	>1014
Surface resistivity	60093	Ω	>1013
Relative Permittivity at 1 Mhz	60250	~	3.9
Dielectric dissipation factor "	60250	~	0.031

 $^{^{*1}}$ - According to method 1 of ISO62 and done on discs Ø 50 x 3mm

⁻ Only for short time exposure (a few hours) in applications where no or only a very low load is applied to the material

^{*3 -} Temperature resistance over a period of min. 20,000 hours. After this there is a decrease in tensile strength of about 50% as compared with the original value. The temperature value given here is thus based on the thermal-oxidative degradation which takes place and causes a reduction in properties. Note however, that the max. allowable service temp. depends in many cases essentially on the duration and the magnitude of the mechanical stresses to which the material is subjected.

^{*4 -} These mostly estimated ratings, derived from raw material supplier data, are not intended to reflect hazards presented by the materials under actual fire conditions. There is no UL yellow card available for TORLON 4503 stock shapes.

⁻ Test specimens: Type 1B

⁻ Test Speed: 5mm/min

⁻ Test specimens: cylinders ø 12 x 30mm

^{*10-} Test specimens: 10mm thick

 $^{^{*}12}_{\text{-}}$ It has to be noted that the figures given for the properties of this TORLON grade have been derived form tests run on test specimens from extruded material.

^{*7-} Test Speed: 1mm/min

^{*9 -} Pendulum used: 4 J *11- Test specimens: 1mm thick

TORLON® 4301 PAI

Polyamide-imide (PAI + graphite+PTFE)

The addition of graphite and PTFE provides higher wear resistance and lower coefficient of friction compared to the unfilled grade as well as little or no stick-slip in use. This extruded grade excels in severe wear applications such as non-lubricated bearing, seals, bearings cages and reciprocating compressor parts.

- High maximum service temperature (250°C)
- Excellent resistance against high energy radiation

Inherent low flammability

- Exceptional wear and frictional behaviour
- Outstanding dimensional stability (to +250°C) Excellent dielectric and insulating properties
- Excellent retention of mechanical strength / stiffness over a wide range of temperatures

Common Applications:

Bearings; Seals; Bearing cages; Reciprocating compressor parts; Thrust washers; Valve seats; Piston rings; vanes; Wear pads.

Technical Specification

Delivery Programme			
	min	max	
Rod 2400mm long diameter (mm)	6.35	50.80	
Plate 1220mm long width (mm) thickness (mm)	305 6.35	25.40	
Colour: Black			

150 Method 1183 62 62 ~ ~ ~ ~ sion ~ ~ ad	Units g/cm ³ mg % % % °C °C W/(K.m) m/(m-K) m/(m-K) m/(m-K)	Values 1.45 26 0.3 1.9 3.8 N/A 280 0.54 25.10-6 25.10-6
62 62 ~ ~ ~ ~ sion ~ ~	mg % % % °C °C W/(K.m) m/(m-K) m/(m-K)	26 0.3 1.9 3.8 N/A 280 0.54 25.10 ⁻⁶ 25.10 ⁻⁶
62 ~ ~ ~ ~ sion ~ ~	% % % °C °C W/(K.m) m/(m-K) m/(m-K)	0.3 1.9 3.8 N/A 280 0.54 25.10 ⁻⁶ 25.10 ⁻⁶
62 ~ ~ ~ ~ sion ~ ~	% % % °C °C W/(K.m) m/(m-K) m/(m-K)	0.3 1.9 3.8 N/A 280 0.54 25.10 ⁻⁶ 25.10 ⁻⁶
~ ~ ~ ~ sion ~ ~ ~	% % % °C °C W/(K.m) m/(m-K) m/(m-K)	1.9 3.8 N/A 280 0.54 25.10 ⁻⁶ 25.10 ⁻⁶
~ ~ ~ sion ~ ~ ~	% °C °C W/(K.m) m/(m-K) m/(m-K)	3.8 N/A 280 0.54 25.10 ⁻⁶ 25.10 ⁻⁶
sion ~ ~ ~ ad	°C °C W/(K.m) m/(m-K) m/(m-K)	N/A 280 0.54 25.10 ⁻⁶ 25.10 ⁻⁶
sion ~ ~ ~ ad	°C W/(K.m) m/(m-K) m/(m-K)	280 0.54 25.10 ⁻⁶ 25.10 ⁻⁶
sion ~ ~ ~ ad	W/(K.m) m/(m-K) m/(m-K)	0.54 25.10 ⁻⁶ 25.10 ⁻⁶
sion ~ ~ ~ ad	m/(m-K) m/(m-K)	25.10 ⁻⁶ 25.10 ⁻⁶
~ ~ ~ ad	m/(m-K)	25.10 ⁻⁶
~ ~ ad	m/(m-K)	25.10 ⁻⁶
~ ad		
	m/(m-K)	
		25.10 ⁻⁶
75	°C	280
in air		
~	°C	270
~	°C	250
4589	%	44
~	~	V-0/V-0
527	MPa	80
527	%	5
527	MPa	5800
604	MPa	31/58
179/1eA	kJ/m ²	4
2039-1	N/mm ²	200
2039-2	~	M105
60093	$\Omega.\mathrm{cm}$	>1013
60093	Ω	>1013
60250	~	5.4
60250	~	0.042
	527 527 527 504 .79/1eA .039-1 .039-2 50093 50093	MPa 527 MPa 527 MPa 527 MPa 527 MPa 604 MPa 79/1eA kJ/m² 2039-1 N/mm² 2039-2 ~ 60093 Ω.cm 60093 Ω.cm 60093 Ω

 $^{^{}c1}$ - According to method 1 of ISO62 and done on discs Ø 50 x 3mm

^{*2 -} Only for short time exposure (a few hours) in applications where no or only a very low load is applied to the material

^{*3 -} Temperature resistance over a period of min. 20,000 hours. After this there is a decrease in tensile strength of about 50% as compared with the original value. The temperature value given here is thus based on the thermal-oxidative degradation which takes place and causes a reduction in properties. Note however, that the max. allowable service temp. depends in many cases essentially on the duration and the magnitude of the mechanical stresses to which the material is subjected.

^{*4 -} These mostly estimated ratings, derived from raw material supplier data, are not intended to reflect hazards presented by the materials under actual fire conditions. There is no UL yellow card available for TORLON 4301 stock shapes.

⁻ Test specimens: Type 1B

⁻ Test Speed: 5mm/min

^{*8 -} Test specimens: cylinders ø 12 x 30mm

Test Speed: 1mm/min

^{*9} Test specimens: 10mm thick

TORLON® 4501 PAI Polyamide-imide (PAI + graphite+PTFE)

This compression moulded material is similar in composition to TORLON® 4301 PAI, and is selected when larger shapes are required.

- High maximum service temperature (250°C)
- Excellent resistance against high energy radiation

Inherent low flammability

- Exceptional wear and frictional behaviour
- Outstanding dimensional stability (to +250°C) Excellent dielectric and insulating properties
- Excellent retention of mechanical strength / stiffness over a wide range of temperatures

Common Applications:

Bearings; Seals; Bearing cages; Reciprocating compressor parts; Thrust washers; Valve seats; Piston rings; vanes; Wear pads.

Delivery Programme				
	min	max		
Rod 153mm long diameter (mm)	50.8	381.00		
Tube 203m long outer diameter (mm) inner diameter (mm)	42.86 19.05	193.68 107.95		
Tube 153m long outer diameter (mm) inner diameter (mm)	196.85 50.80	882.65 736.6		
Plate 305mm long width (mm) thickness (mm)	305 9.53	50.80		
Plate 610mm long width (mm) thickness (mm)	305 9.53	38.10		
Colour: Black				

Technical Specification			
Property	ISO Method	Units	Values
Density	1183	g/cm ³	1.45
Water absorption*1			
after 24h immersion in water (23°C)	62	mg	26
	62	%	0.3
Saturation in air (23°C/50% RH)	~	%	1.9
Saturation in water (23°C)	~	%	3.8
Melting temperature	~	°C	N/A
Glass transition temperature	~	°C	280
Thermal conductivity at 23°C	~	W/(K.m)	0.54
Coefficient of linear thermal expa	nsion		_
average value between 23 - 100°C	~	m/(m-K)	25.10 ⁻⁶
average value between 23 - 150°C	~	m/(m-K)	25.10 ⁻⁶
average value above 150°C	~	m/(m-K)	25.10 ⁻⁶
Temperature of deflection under le			
method A: 1.8 MPa	75	°C	280
Max allowable service temperatur	e in air		
• for short periods*2	~	°C	270
· continuously for 20,000 hrs*3	~	°C	250
Flammability*4			
"Oxygen Index"	4589	%	44
according to UL94 (1.5/3mm thickness)	~	~	V-0/V-0
Tension Test*5			
Stress at break*6	527	MPa	80
• Strain at break*6	527	%	5
• Tensile modulus of elasticity*7	527	MPa	5800
Compression Test*8			
• Stress at 1/2% nominal strain*7	604	MPa	31/58
Impact - Charpy notched	179/1eA	kJ/m ²	4
Ball Indentation hardness*9	2039-1	N/mm ²	200
Hardness Rockwell*9	2039-2	~	M105
Volume resistivity	60093	Ω .cm	>10 ¹³
Surface resistivity	60093	Ω	>1013
Relative Permittivity at 1 Mhz	60250	~	5.4
Dielectric dissipation factor "	60250	~	0.042

 $^{^{*1}}$ - According to method 1 of ISO62 and done on discs Ø 50 x 3mm

⁻ Only for short time exposure (a few hours) in applications where no or only a very low load is applied to the material

^{*3 -} Temperature resistance over a period of min. 20,000 hours. After this there is a decrease in tensile strength of about 50% as compared with the original value. The temperature value given here is thus based on the thermal-oxidative degradation which takes place and causes a reduction in properties. Note however, that the max. allowable service temp. depends in many cases essentially on the duration and the magnitude of the mechanical stresses to which the material is subjected.

⁻ These mostly estimated ratings, derived from raw material supplier data, are not intended to reflect hazards presented by the materials under actual fire conditions. There is no UL yellow card available for TORLON 4501 stock shapes.

⁻ Test specimens: Type 1B

⁻ Test Speed: 5mm/min

⁻ Test specimens: cylinders ø 12 x 30mm

⁻ Test Speed: 1mm/min

^{*9 -} Test specimens: 10mm thick

^{*10-} It has to be noted that the figures given for the properties of this TORLON grade have been derived form tests run on test specimens from extruded material.

TORLON® 5530 PAI Polyamide-imide (PAI+GF30)

This compression moulded, 30% glass fibre reinforced grade offers higher stiffness, mechanical strength and creep resistance than TORLON® 4203 PAI and TORLON® 4503 PAI. It is well suited for structural applications supporting static loads for long periods of time at high temperatures. The suitability of TORLON® 5530 PAI for sliding parts, however, is to be carefully examined since the glass fibres tend to abrade the mating surface.

- High maximum service temperature (250°C)
- · Excellent resistance against high energy radiation

Inherent low flammability

- Exceptional wear and frictional behaviour
- - Outstanding dimensional stability (to +250°C) Excellent dielectric and insulating properties
- Excellent retention of mechanical strength / stiffness over a wide range of temperatures

Common Applications:

Bearings; Seals; Bearing cages; Reciprocating compressor parts; Thrust washers; Valve seats; Piston rings; vanes; Wear pads.

Delivery Programme				
	min	max		
Rod 153mm long diameter (mm)	50.80	381.0		
Tube 203m long outer diameter (mm) inner diameter (mm)	42.86 19.05	193.68 107.95		
Tube 153m long outer diameter (mm) inner diameter (mm)	196.85 50.80	882.65 736.6		
Plate 305mm long width (mm) thickness (mm)	305 9.53	50.80		
Plate 610mm long width (mm) thickness (mm)	305 9.53	38.10		
Colour: Khaki grey				

Technical Specification			
Property	ISO Method	Units	Values
Density Water absorption*1	1183	g/cm ³	1.61
after 24h immersion in water (23°C)	62 62	mg %	25 0.26
Saturation in air (23°C/50% RH) Saturation in water (23°C)	~ ~	% %	1.7 3.0
Melting temperature Glass transition temperature	~ ~	°C	N/A 280
Thermal conductivity at 23°C Coefficient of linear thermal expan	~ nsion	W/(K.m)	0.36
average value between 23 - 100°Caverage value between 23 - 150°C	~ ~	m/(m-K) m/(m-K)	25.10 ⁻⁶ 25.10 ⁻⁶
· average value above 150°C Temperature of deflection under lo	~ oad	m/(m-K)	25.10 ⁻⁶
· method A: 1.8 MPa Max allowable service temperatur	75 e in air	°C	280
for short periods*2 continuously for 20,000 hrs*3 Flammability*4	~ ~	°C	270 250
"Oxygen Index" according to UL94 (1.5/3mm thickness)	4589 ~	% ~	50 V-0/V-0
Tension Test*5 • Stress at break*6	527	MPa	95
Strain at break*6 Tensile modulus of elasticity*7 Impact - Charpy notched Hardness Rockwell*8 Electric Strength*9 Volume resistivity	527 527 179/1eA 2039-2 60243 60093	% MPa kJ/m² ~ KV/mm Ω.cm	3 6200 3.5 E85 M125 28 >10 ¹³
Surface resistivity Relative Permittivity at 1 Mhz Dielectric dissipation factor "	60093 60250 60250	Ω ~ ~	>10 ¹³ 4.2 0.050

 $^{^{*1}}$ - According to method 1 of ISO62 and done on discs Ø 50 x 3mm

^{*2 -} Only for short time exposure (a few hours) in applications where no or only a very low load is applied to the material

^{*3 -} Temperature resistance over a period of min. 20,000 hours. After this there is a decrease in tensile strength of about 50% as compared with the original value. The temperature value given here is thus based on the thermal-oxidative degradation which takes place and causes a reduction in properties. Note however, that the max. allowable service temp. depends in many cases essentially on the duration and the magnitude of the mechanical stresses to which the material is subjected.

^{*4 -} These mostly estimated ratings, derived from raw material supplier data, are not intended to reflect hazards presented by the materials under actual fire conditions. There is no UL yellow card available for TORLON 5530 stock shapes.

⁻ Test specimens: Type 1B

⁻ Test Speed: 5mm/min

^{*8 -} Test specimens: 10mm thick

^{*7 -} Test Speed: 1mm/min

^{*9 -} Test specimens: 1mm thick